
DGrammar

S. van Leent
October 7, 2005

Copyright c
2005 Sjoerd van Leent. Permission is granted to copy, dis-tribute and/or modify this document under the terms of the GNU FreeDocumentation License, Version 1.2 or any later version published by theFree Software Foundation; with no Invariant Sections, no Front-Cover Texts,and no Back-Cover Texts. A copy of the license is included in the sectionentitled "GNU Free Documentation License".

1

CONTENTS

Contents

1 Preface 4
2 A �rst look 52.1 The famous example . 52.2 The Grammar . 52.3 Compile and Run . 6
3 A better grammar 83.1 Logical separation . 83.2 Case insensitive matching . 83.3 Whitespaces . 93.4 Colon or Arrow . 10
4 Evaluation 124.1 Simple evaluation . 124.2 Exclusive matching . 144.3 A Nice Grammar . 154.4 A Nice Evaluator . 16
5 Another Example 19
A Installing DGrammar 21
B GNU Free Documentation License 221. APPLICABILITY AND DEFINITIONS 222. VERBATIM COPYING . 243. COPYING IN QUANTITY . 244. MODIFICATIONS . 255. COMBINING DOCUMENTS 276. COLLECTIONS OF DOCUMENTS 287. AGGREGATION WITH INDEPENDENT WORKS 288. TRANSLATION . 289. TERMINATION . 2910. FUTURE REVISIONS OF THIS LICENSE 29

2

CONTENTS CONTENTS
ADDENDUM: How to use this License for your documents 29

3

Preface

Chapter 1

Preface

The idea behind DGrammar was to develop a Grammarcompiler, or some-times also called a Compiler/Compiler, to be able to interpret a Grammarspeci�cation and compile it to a D �le, to be used as a D package.The �rst thought occured, how should this thing look like? Should itact as YACC, or should it do something completely di�erent such as LALR.Well, to be honest, initialy the Syntax of DGrammar looks like YACC,but apart from that, many things are changed. DGrammar shares a lot ofideology with the de facto XML SAX standard.But why would one develop a new Grammarcompiler. Well, YACCworks, but it is aging, and it only works decently with C or C++ code.Besides that, YACC looks quite ugly. Execution code is mixed into thegrammar �le, which makes the grammar �le rather di�cult to read andeven more of a hazzard to maintain.Why for D? This is a valid question, and not a stupid one either. DGram-mar could just as well be developed for C++ or Java. But the speci�c be-haviour such as list-slicing, a fast runtime regular expression parser, and avery good working Garbage Collector makes D an excellent choice. Surelybecause when parsing, objects are created and later on abandonded becauseof better paths.In this document, references are written like reference, text output iswritten like output and text input is written like input . If it is needed tohit the Enter key, it is shown with: -.

4

A �rst look

Chapter 2

A �rst look

2.1 The famous example
These days many people like to write extensive introductions on how some-thing works before actually working with it. In this book we just begin withwriting the �rst application. Before diving into it, make sure you have a Dcompiler such as DMD, available from http://www.digitalmars.com/d/ andDGrammar installed properly (Appendix A).Let's look how a simple DGrammar �le looks like:
%module example1Body:"Hello World!"/s [ParseBody] ;
The %module directive tells the DGrammar compiler that the compiler gen-erated should be placed in the module `example1'. It behaves similar towhat D does with module.
2.2 The Grammar
The grammer itself shows some particular interesting information. The �rstline contains the Body statement, followed by a colon. This marks the be-ginning of a grammar, in this case the grammar named Body.On the next line there is a statement "Hello World!"/s, which indicatesthat a string should be matched with the characters in that order. One canread this part as:
� = fHello t world!gL1 = fHello tWorld!g 2 ��

So the language L1 contains the sentence `Hello World!'. No other ex-pressions are speci�ed, what is left over is the [ParseBody] Rule speci�er,which is used while evaluating, and the semicolon, ending the grammar.The �le could be saved as `example1.d'.
5

A �rst look Compile and Run
2.3 Compile and Run
Before it is possible to actually use the grammar it needs to be compiled toa D �le. This looks like the way YACC works, compiling it to C or C++in that case. This has the advantage that the grammar is compiled andtherefore is faster. To compile the grammar �le, the following commandneeds to be executed in a console environment:
$ dgrammar example1.dg -o example1.d -

As can be seen, it looks all quite familiar. One gives a �le, in this case`example1.dg' and let dgrammer write it to `example1.d'.However, before it is possible to use the newly created parser, we need tocreate a simple D procedure invoking the parser. The following illustrates asimple method to do this:
module main;
import std.cstream;import std.stdio;import std.string;import example1;
int main(char[][] args) {char[] line;line = (new CFile(stdin, FileMode.In)).readLine();line = strip(line);

register();Parser parser = parse(EParser.Body, line);
if(parser is null) {writefln("You didn't enter 'Hello World!'");} else {writefln("Hello to you!");}return 0;}
First, characters are read from the `stdin', or simply the command line.After the characters are read, the parser has to be initialized using theregister() function. What remains is to parse the line, using the parse()function. The function expects to arguments, the initial Grammar, in thiscase there is only one grammar, EParser.Body, and the string which needsto be parsed.

6

A �rst look Compile and Run
If the resulting parser object, returned from the parse function is non-existing, e.g. null, then something went wrong, otherwise, the parse cyclewas successful.This �le could be written to `main.d', and after that the following ruleneeds to be executed when using dmd:

$ dmd main.d example1.d -ofexample1 -
After compiling the code, the last thing to happen is to execute the �le:

$./example1 -Hello World! -Hello to you!
If this all works, the �rst compiler seems to be working. It doesn't domuch, and it probably isn't very useful, but it works.

7

A better grammar

Chapter 3

A better grammar

3.1 Logical separation
Let's look whether it is possible to split the `Hello World!' grammar intomore logical parts. What to think of the parts `Hello', `t' and `World!'?These parts can be divided into three sections. The following code representsa grammar �le doing this:
%module example2Body:"Hello"/s " "/s "World!"/s [ParseBody] ;

This is much more versatile, since the grammar now is devided intoparts. Any language Ln can exists out of any sentence or sentences whichcan be created from ��. Now, within the grammar Body, three Languagesare speci�ed:
� = fHello;t;World!gL1 = fHellog 2 ��
L2 = f t g 2 ��
L3 = fWorld!g 2 ��

Together they form a concatenation of the language: Lp = L1L2L3. SoLp de�nes the language Lp = fHello tWorld!g. Technically this grammaris not acting di�erent as the previous grammar, but it shows how to logicallysplit up the grammar in di�erent components.
3.2 Case insensitive matching
Sometimes, you don't only want \Hello World!" to be valid, but also varia-tions, such as \HELLO WORLD!" or \hello world!". This can be achievedusing case insensitive matching. If we want to do this, we have to rewritethe previous example as:

8

A better grammar Whitespaces
%module example2a;Body:"Hello"/si " "/s "World!"/si [ParseBody] ;

The /si switch indicates that a sentence matches against all case vari-ants. This allows you to create a grammar used in programming languagesas BASIC and ADA.
3.3 Whitespaces
Now it is somewhat cumbersome to have to specify the whitespace characterwithin a speci�c symbol every time again. It makes the grammar di�cultto read. So the following grammar exposes the %ignore directive. Thisdirective gives us the possibility to to ignore a speci�ed symbol.
%module example3%ignore WhiteSpaceBody:"Hello"/s "World!"/s [ParseBody] ;
<WhiteSpace> WhiteSpace:"[\s]+"/r [ParseWhite] ;

The %ignore tells the generated parser that it has to skip everythingbeing a whitespace. Well, not exactly. It tells the parser that it has toskip every whitespace within a speci�ed machine. However, the standardmachine is unnamed, and not visible. A machine is speci�ed between < and>. These speci�ers are within another scope as the symbol speci�ers andtherefore the speci�er names may be the same, they don't clash.As can be seen, the WhiteSpace grammar is de�ned within another ma-chine. This is necessary, because if we need to skip whitespaces, we don'twant to skip them also within the WhiteSpace symbol itself, because al-though it is a correct speci�cation, the generated parser will crash.When calling another machine, the symbol itself specifying the machineswitches the context, so that is why the %ignore directive doesn't need tospecify the name of the new machine. Developers with knowledge of theFLEX or LEX lexer will see something familiar here.Another new thing is the /r switch, which indicates that we have to dowith a regular expression instead of a normal string. Regular expressionsare those used in the std.regexp package of D. Of course, it is also possibleto use /ri which is, just as the string counterpart /si, case insensitive.This grammar is di�erent from the previous grammar because it allowsto enter more spaces between `Hello' and `World!'. The following languagesspecify how the parser acts:
9

A better grammar Colon or Arrow
La1 = fHellog 2 ��
La2 = fWorld!g 2 ��
Lb = nf t g+o 2 ��
Lp = LbLa1LbLa2Lb

Now we can slightly alter the code of the D �le, the D �le using this codewould now look like:
module main;
import std.cstream;import std.stdio;import example3;
int main(char[][] args) {char[] line;line = (new CFile(stdin, FileMode.In)).readLine();

register();Parser parser = parse(EParser.Body, line);
if(parser is null) {writefln("You didn't enter 'Hello World!'");} else {writefln("Hello to you!");}return 0;}
Notice that the strip function isn't needed anymore, since it is automat-ically implemented with the whitespace grammar. When running the buildexecutable, the following gives an impression of possibilities:

$./example3 -Hello World! - Hello World! -Hello to you Hello to you
3.4 Colon or Arrow
The previous example can be rewritten using an arrow instead of a colonto identify each symbol. The following code performs the same task as theprevious example:
%module example3a

10

A better grammar Colon or Arrow
%ignore WhiteSpaceBody -->"Hello"/s "World!"/s [ParseBody] ;
<WhiteSpace> WhiteSpace -->"[\s]+"/r [ParseWhite] ;

It is just a matter of what you like to choose. It is also fully legal to usethem both in the same source, but that makes it much harder to understand,do be somewhat disciplined and abstain from doing that.

11

Evaluation

Chapter 4

Evaluation

4.1 Simple evaluation
The previous generated parsers didn't do much usefull, besides checkingwhether or not one did enter a string "Hello World!". But a real parserofcourse is able to check logical parts. So the following grammars introducea way to let the scanned line interoperate with the generated parser. It willchoose to print a number or character on the screen, when one enters thekeyword "print";
%module example4;%ignore WhiteSpace;Body:"print"/s "[0-9]+"/r [PrintNum] |"print"/s "[a-zA-Z]+"/r [PrintAlpha] ;
<WhiteSpace> WhiteSpace:"[\s]+"/r [ParseWhite] ;

What's done is that the parser checks whether one entered "print" fol-lowed by a number or by character. The grammar can be read as:
La = fprintg 2 ��
Lbn = nf0; 1; 2; 3; 4; 5; 6; 7; 8; 9g+o 2 ��
Lba = nfa; b; : : : ; z; A;B; : : : ; Zg+o 2 ��
Lb = nf t g+o 2 ��
Lan = LbLaLbLbnLbLaa = LbLaLbLbaLbLp = Lan [Laa

As one can see, describing such a parser without the help of a grammarand without regular expressions, it becomes much of an art which only a
12

Evaluation Simple evaluation
few want to do.The generated parser can be used to create a compiler that does do some-thing with the entered line. Previously, it didn't do more as just validatingif the code was sane, but we can evaluate the code by creating an evaluator.To do this, one derives a class from the Evaluator interface. Here is how itis done:
module main;
import std.cstream;import std.stdio;import example4;
public class MyEvaluator : Evaluator {public Object go(EParser parserType, Rule rule, char[] ruleName) {if(parserType == EParser.Body &&ruleName == "PrintNum") {writefln("Number: %s",rule.elementAt(1).getMatch());} else {writefln("String: %s",rule.elementAt(1).getMatch());}return null;}}
int main(char[][] args) {char[] line;line = (new CFile(stdin, FileMode.In)).readLine();

register();Parser parser = parse(EParser.Body, line);
if(parser is null) {writefln("You entered garbage");} else {writefln("It parsed, let's evaluate");evaluate(parser, new MyEvaluator());}return 0;}

13

Evaluation Exclusive matching
4.2 Exclusive matching
In many programming languages words are used to identify a speci�c key-word. For example, in C, \struct" is used to identify a structure or recordof di�erent types. However, words as \struc" and \structu" are variablenames. If using a regular expression such as [A-Za-z]* it would match anyof them. But the exclusive match, if found, overrides the regular expression,making it invalid.The following, modi�ed version of the previous grammar explicitly checksfor the keyword \hello". An example:
%module example4a;%ignore WhiteSpace;Body:"print"/s "[0-9]+"/r [PrintNum] |"print"/s "[a-zA-Z]+"/r [PrintAlpha] |"print"/s "hello"/sxi [PrintHello] ;
<WhiteSpace> WhiteSpace:"[\s]+"/r [ParseWhite] ;

In this case, any case insensitive word de�ning \hello" is automaticallyused apart from the others. To use this feature, use the switch /sxi or thecase sensitive version /sx. The following D code shows how it can be used:
module main;
import std.cstream;import std.stdio;import example4a;
public class MyEvaluator : Evaluator {public Object go(EParser parserType, Rule rule, char[] ruleName) {if(parserType == EParser.Body &&ruleName == "PrintNum") {writefln("Number: %s", rule.elementAt(1).getMatch());} else if(parserType == EParser.Body &&ruleName == "PrintAlpha"){writefln("String: %s", rule.elementAt(1).getMatch());} else {writefln("%s", "Hello to you!");}return null;}

14

Evaluation A Nice Grammar
}
int main(char[][] args) {char[] line;line = (new CFile(stdin, FileMode.In)).readLine();
register();Parser parser = parse(EParser.Body, line);
if(parser is null) {writefln("You entered garbage");} else {writefln("It parsed, let's evaluate");evaluate(parser, new MyEvaluator());}return 0;}

When running the program, enter print Hello and it will return Helloto you back.
4.3 A Nice Grammar
To illustrate how the DefaultEvaluator works, the following dgrammar �lede�nes a parser which actually does something useful. It calculates usingthe operators +, -, * and /, on signed integers.
%module example5;%ignore WhiteSpace;
< WhiteSpace > WhiteSpace:"[\s\r\n\t]" [WhiteSpace] ;
Declarations:Intermediate ";"/s Declarations [Decl] |[Empty] ;Intermediate:AddExp [Intermediate] ;
AddExp:AddExp "+"/s MulExp [Add] |AddExp "-"/s MulExp [Substract] |MulExp [MulExp] ;

15

Evaluation A Nice Evaluator
MulExp:MulExp "*"/s Argument [Multiply] |MulExp "/"/s Argument [Divide] |Argument [Argument] ;
Argument:"\-?[0-9]+" [Number] ;

A closer look reveals that it is possible to call other grammars and touse recursion. Also, the WhiteSpace and Argument grammars de�ne regularexpressions. Note that it is not needed to use the /r switch for regularexpressions.
4.4 A Nice Evaluator
The evaluator used to evaluate the generated parser is derived from thetemplate class DefaultEvaluator. It supports a set of nice features such asthe set() and nullify() methods.The nullify()method skips the evaluation of a part of the tree. It needsone argument, being the position of the tree to skip. The set() methodchanges the evaluator type from one to another, so one is able to split upthe evaluation in di�erent classes, hence also in di�erent modules, makingit much easier to maintain. The set() method needs two arguments, theposition of the tree and the new object to use as evaluator.The following is an implementation of such an evaluator:
module main;
import example5;import std.conv;import std.stream;import std.stdio;
public class Float {float number;this(float number) {this.number = number;}}
public class MyEvaluator : DefaultEvaluator!(MyEvaluator) {private EParser currentParser;private char[] ruleName;private float finalNumber;

16

Evaluation A Nice Evaluator

public void enter(EParser parserType, Rule rule, char[] ruleName) {
this.currentParser = parserType;this.ruleName = ruleName;
if(currentParser == EParser.Argument) {if(ruleName == "Number") {finalNumber =toInt(rule.elementAt(0).getMatch());}nullify(0);}

}
public Object leave(Object[] resultSet) {if(currentParser == EParser.Argument) {return new Float(finalNumber);} else if(ruleName == "Add" ||ruleName == "Substract" ||ruleName == "Multiply" ||ruleName == "Divide") {float number1 =(cast(Float)(resultSet[0])).number;float number2 =(cast(Float)(resultSet[2])).number;switch(ruleName) {case "Add":return new Float(number1 + number2);break;

case "Substract":return new Float(number1 - number2);break;
case "Multiply":return new Float(number1 * number2);break;
case "Divide":return new Float(number1 / number2);

17

Evaluation A Nice Evaluator
break;}} else if(ruleName != "Empty") {if(ruleName == "Intermediate") {writefln("%s", (cast(Float)(resultSet[0])).number);}return resultSet[0];}return new Float(0);}}

public int main(char[][] args) {if(args.length <= 1) {writefln("usage: %s <filename>", args[0]);return 1;}File f = new File(args[1]);char[] s = f.toString();
register();
Parser parser = parse(EParser.Declarations, s);if(parser is null) {writefln("You entered garbage");return 1;}else {evaluate(parser, new MyEvaluator());}
return 0;}

This should be able to compile, and there you are, a nice little calculator,able to use a �le with your calculations, split with a semicolon.

18

Another Example

Chapter 5

Another Example

The examples included with the source of DGrammar include an examplecalled "Easy". It is a kind of script language interpreter, which allows you tocalculate on numbers, variables and includes di�erent kinds of statements,whereof one statement is a while loop. The while loop stops when thenumber assigned to it reaches 0.The example script �le looks like this:
begin:

declare var;assign var := 9 * 5 + 5 * -7;assign var := 10 * var;print var;
while var begin:assign var := var - 1;print var;

declare sub;assign sub := 3 * 10 + 3;print sub;
while sub begin:assign sub := sub - 2;print sub;end;end;

print var;end;

19

Another Example
It looks a bit like Pascal, but misses most of the features. It is a verysimple language, but it illustrates the possibilities of DGrammar. As youcan see, it allows you to declare variables and to assign variables. Variablescan be (re-)declared within a scope, so they can be reused.

20

Installing DGrammar

Appendix A

Installing DGrammar

Installing DGrammar requires some knowledge about make, and it is neces-sary to have FLEX, Bison, C, C++ and DMD. One also needs permissionto install programs.To Build DGrammar, it is necessary to go to the root directory of theDGrammar source folder. Then using make, enter:
$ make -

After making the program, use make to install:
$ make install -

This should install DGrammar.

21

GNU Free Documentation License

Appendix B

GNU Free Documentation
License

Version 1.2, November 2002Copyright c
2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of thislicense document, but changing it is not allowed.
Preamble

The purpose of this License is to make a manual, textbook, or otherfunctional and useful document "free" in the sense of freedom: to assureeveryone the e�ective freedom to copy and redistribute it, with or withoutmodifying it, either commercially or noncommercially. Secondarily, this Li-cense preserves for the author and publisher a way to get credit for theirwork, while not being considered responsible for modi�cations made by oth-ers.This License is a kind of "copyleft", which means that derivative worksof the document must themselves be free in the same sense. It complementsthe GNU General Public License, which is a copyleft license designed forfree software.We have designed this License in order to use it for manuals for freesoftware, because free software needs free documentation: a free programshould come with manuals providing the same freedoms that the softwaredoes. But this License is not limited to software manuals; it can be usedfor any textual work, regardless of subject matter or whether it is publishedas a printed book. We recommend this License principally for works whosepurpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

22

GNU Free Documentation License
This License applies to any manual or other work, in any medium, thatcontains a notice placed by the copyright holder saying it can be distributedunder the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditionsstated herein. The "Document", below, refers to any such manual orwork. Any member of the public is a licensee, and is addressed as "you".You accept the license if you copy, modify or distribute the work in a wayrequiring permission under copyright law.A "Modi�ed Version" of the Document means any work containingthe Document or a portion of it, either copied verbatim, or with modi�ca-tions and/or translated into another language.A "Secondary Section" is a named appendix or a front-matter sectionof the Document that deals exclusively with the relationship of the publishersor authors of the Document to the Document's overall subject (or to relatedmatters) and contains nothing that could fall directly within that overallsubject. (Thus, if the Document is in part a textbook of mathematics, aSecondary Section may not explain any mathematics.) The relationshipcould be a matter of historical connection with the subject or with relatedmatters, or of legal, commercial, philosophical, ethical or political positionregarding them.The "Invariant Sections" are certain Secondary Sections whose titlesare designated, as being those of Invariant Sections, in the notice that saysthat the Document is released under this License. If a section does not �tthe above de�nition of Secondary then it is not allowed to be designatedas Invariant. The Document may contain zero Invariant Sections. If theDocument does not identify any Invariant Sections then there are none.The "Cover Texts" are certain short passages of text that are listed,as Front-Cover Texts or Back-Cover Texts, in the notice that says that theDocument is released under this License. A Front-Cover Text may be atmost 5 words, and a Back-Cover Text may be at most 25 words.A "Transparent" copy of the Document means a machine-readablecopy, represented in a format whose speci�cation is available to the generalpublic, that is suitable for revising the document straightforwardly withgeneric text editors or (for images composed of pixels) generic paint pro-grams or (for drawings) some widely available drawing editor, and that issuitable for input to text formatters or for automatic translation to a varietyof formats suitable for input to text formatters. A copy made in an other-wise Transparent �le format whose markup, or absence of markup, has beenarranged to thwart or discourage subsequent modi�cation by readers is notTransparent. An image format is not Transparent if used for any substantialamount of text. A copy that is not "Transparent" is called "Opaque".Examples of suitable formats for Transparent copies include plain ASCIIwithout markup, Texinfo input format, LaTeX input format, SGML or XMLusing a publicly available DTD, and standard-conforming simple HTML,

23

GNU Free Documentation License
PostScript or PDF designed for human modi�cation. Examples of trans-parent image formats include PNG, XCF and JPG. Opaque formats includeproprietary formats that can be read and edited only by proprietary wordprocessors, SGML or XML for which the DTD and/or processing tools arenot generally available, and the machine-generated HTML, PostScript orPDF produced by some word processors for output purposes only.The "Title Page" means, for a printed book, the title page itself, plussuch following pages as are needed to hold, legibly, the material this Licenserequires to appear in the title page. For works in formats which do not haveany title page as such, "Title Page" means the text near the most prominentappearance of the work's title, preceding the beginning of the body of thetext.A section "Entitled XYZ" means a named subunit of the Documentwhose title either is precisely XYZ or contains XYZ in parentheses followingtext that translates XYZ in another language. (Here XYZ stands for aspeci�c section name mentioned below, such as "Acknowledgements","Dedications", "Endorsements", or "History".) To "Preserve theTitle" of such a section when you modify the Document means that itremains a section "Entitled XYZ" according to this de�nition.The Document may include Warranty Disclaimers next to the noticewhich states that this License applies to the Document. These WarrantyDisclaimers are considered to be included by reference in this License, butonly as regards disclaiming warranties: any other implication that theseWarranty Disclaimers may have is void and has no e�ect on the meaning ofthis License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-mercially or noncommercially, provided that this License, the copyright no-tices, and the license notice saying this License applies to the Document arereproduced in all copies, and that you add no other conditions whatsoeverto those of this License. You may not use technical measures to obstruct orcontrol the reading or further copying of the copies you make or distribute.However, you may accept compensation in exchange for copies. If you dis-tribute a large enough number of copies you must also follow the conditionsin section 3.You may also lend copies, under the same conditions stated above, andyou may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly haveprinted covers) of the Document, numbering more than 100, and the Doc-ument's license notice requires Cover Texts, you must enclose the copies in

24

GNU Free Documentation License
covers that carry, clearly and legibly, all these Cover Texts: Front-CoverTexts on the front cover, and Back-Cover Texts on the back cover. Bothcovers must also clearly and legibly identify you as the publisher of thesecopies. The front cover must present the full title with all words of the titleequally prominent and visible. You may add other material on the covers inaddition. Copying with changes limited to the covers, as long as they pre-serve the title of the Document and satisfy these conditions, can be treatedas verbatim copying in other respects.If the required texts for either cover are too voluminous to �t legibly,you should put the �rst ones listed (as many as �t reasonably) on the actualcover, and continue the rest onto adjacent pages.If you publish or distribute Opaque copies of the Document numberingmore than 100, you must either include a machine-readable Transparentcopy along with each Opaque copy, or state in or with each Opaque copya computer-network location from which the general network-using publichas access to download using public-standard network protocols a completeTransparent copy of the Document, free of added material. If you use thelatter option, you must take reasonably prudent steps, when you begin dis-tribution of Opaque copies in quantity, to ensure that this Transparent copywill remain thus accessible at the stated location until at least one year af-ter the last time you distribute an Opaque copy (directly or through youragents or retailers) of that edition to the public.It is requested, but not required, that you contact the authors of theDocument well before redistributing any large number of copies, to givethem a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modi�ed Version of the Document underthe conditions of sections 2 and 3 above, provided that you release theModi�ed Version under precisely this License, with the Modi�ed Version�lling the role of the Document, thus licensing distribution and modi�cationof the Modi�ed Version to whoever possesses a copy of it. In addition, youmust do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct fromthat of the Document, and from those of previous versions (whichshould, if there were any, be listed in the History section of the Docu-ment). You may use the same title as a previous version if the originalpublisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entitiesresponsible for authorship of the modi�cations in the Modi�ed Version,together with at least �ve of the principal authors of the Document (all

25

GNU Free Documentation License
of its principal authors, if it has fewer than �ve), unless they releaseyou from this requirement.

C. State on the Title page the name of the publisher of the Modi�edVersion, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modi�cations adjacentto the other copyright notices.
F. Include, immediately after the copyright notices, a license notice givingthe public permission to use the Modi�ed Version under the terms ofthis License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections andrequired Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add toit an item stating at least the title, year, new authors, and publisher ofthe Modi�ed Version as given on the Title Page. If there is no sectionEntitled "History" in the Document, create one stating the title, year,authors, and publisher of the Document as given on its Title Page,then add an item describing the Modi�ed Version as stated in theprevious sentence.
J. Preserve the network location, if any, given in the Document for pub-lic access to a Transparent copy of the Document, and likewise thenetwork locations given in the Document for previous versions it wasbased on. These may be placed in the "History" section. You mayomit a network location for a work that was published at least fouryears before the Document itself, or if the original publisher of theversion it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Pre-serve the Title of the section, and preserve in the section all the sub-stance and tone of each of the contributor acknowledgements and/ordedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in theirtext and in their titles. Section numbers or the equivalent are notconsidered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may notbe included in the Modi�ed Version.

26

GNU Free Documentation License
N. Do not retitle any existing section to be Entitled "Endorsements" orto con
ict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modi�ed Version includes new front-matter sections or appendicesthat qualify as Secondary Sections and contain no material copied from theDocument, you may at your option designate some or all of these sectionsas invariant. To do this, add their titles to the list of Invariant Sections inthe Modi�ed Version's license notice. These titles must be distinct from anyother section titles.You may add a section Entitled "Endorsements", provided it containsnothing but endorsements of your Modi�ed Version by various parties{forexample, statements of peer review or that the text has been approved byan organization as the authoritative de�nition of a standard.You may add a passage of up to �ve words as a Front-Cover Text, anda passage of up to 25 words as a Back-Cover Text, to the end of the list ofCover Texts in the Modi�ed Version. Only one passage of Front-Cover Textand one of Back-Cover Text may be added by (or through arrangementsmade by) any one entity. If the Document already includes a cover text forthe same cover, previously added by you or by arrangement made by thesame entity you are acting on behalf of, you may not add another; but youmay replace the old one, on explicit permission from the previous publisherthat added the old one.The author(s) and publisher(s) of the Document do not by this Licensegive permission to use their names for publicity for or to assert or implyendorsement of any Modi�ed Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released underthis License, under the terms de�ned in section 4 above for modi�ed versions,provided that you include in the combination all of the Invariant Sectionsof all of the original documents, unmodi�ed, and list them all as InvariantSections of your combined work in its license notice, and that you preserveall their Warranty Disclaimers.The combined work need only contain one copy of this License, andmultiple identical Invariant Sections may be replaced with a single copy.If there are multiple Invariant Sections with the same name but di�erentcontents, make the title of each such section unique by adding at the endof it, in parentheses, the name of the original author or publisher of thatsection if known, or else a unique number. Make the same adjustment tothe section titles in the list of Invariant Sections in the license notice of thecombined work.

27

GNU Free Documentation License
In the combination, you must combine any sections Entitled "History" inthe various original documents, forming one section Entitled "History"; like-wise combine any sections Entitled "Acknowledgements", and any sectionsEntitled "Dedications". You must delete all sections Entitled "Endorse-ments".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-ments released under this License, and replace the individual copies of thisLicense in the various documents with a single copy that is included in thecollection, provided that you follow the rules of this License for verbatimcopying of each of the documents in all other respects.You may extract a single document from such a collection, and distributeit individually under this License, provided you insert a copy of this Licenseinto the extracted document, and follow this License in all other respectsregarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENTWORKS
A compilation of the Document or its derivatives with other separateand independent documents or works, in or on a volume of a storage ordistribution medium, is called an "aggregate" if the copyright resulting fromthe compilation is not used to limit the legal rights of the compilation'susers beyond what the individual works permit. When the Document isincluded in an aggregate, this License does not apply to the other works inthe aggregate which are not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to these copiesof the Document, then if the Document is less than one half of the entireaggregate, the Document's Cover Texts may be placed on covers that bracketthe Document within the aggregate, or the electronic equivalent of covers ifthe Document is in electronic form. Otherwise they must appear on printedcovers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modi�cation, so you may distributetranslations of the Document under the terms of section 4. Replacing Invari-ant Sections with translations requires special permission from their copy-right holders, but you may include translations of some or all InvariantSections in addition to the original versions of these Invariant Sections. Youmay include a translation of this License, and all the license notices in theDocument, and any Warranty Disclaimers, provided that you also includethe original English version of this License and the original versions of those

28

GNU Free Documentation License
notices and disclaimers. In case of a disagreement between the translationand the original version of this License or a notice or disclaimer, the originalversion will prevail.If a section in the Document is Entitled "Acknowledgements", "Ded-ications", or "History", the requirement (section 4) to Preserve its Title(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document exceptas expressly provided for under this License. Any other attempt to copy,modify, sublicense or distribute the Document is void, and will automaticallyterminate your rights under this License. However, parties who have receivedcopies, or rights, from you under this License will not have their licensesterminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of theGNU Free Documentation License from time to time. Such new versionswill be similar in spirit to the present version, but may di�er in detail toaddress new problems or concerns. See http://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number. Ifthe Document speci�es that a particular numbered version of this License"or any later version" applies to it, you have the option of following theterms and conditions either of that speci�ed version or of any later versionthat has been published (not as a draft) by the Free Software Foundation.If the Document does not specify a version number of this License, youmay choose any version ever published (not as a draft) by the Free SoftwareFoundation.
ADDENDUM: How to use this License for yourdocuments
To use this License in a document you have written, include a copy ofthe License in the document and put the following copyright and licensenotices just after the title page:
Copyright c
YEAR YOUR NAME. Permission is granted tocopy, distribute and/or modify this document under the termsof the GNU Free Documentation License, Version 1.2 or anylater version published by the Free Software Foundation; withno Invariant Sections, no Front-Cover Texts, and no Back-CoverTexts. A copy of the license is included in the section entitled"GNU Free Documentation License".

29

GNU Free Documentation License
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, withthe Front-Cover Texts being LIST, and with the Back-CoverTexts being LIST.

If you have Invariant Sections without Cover Texts, or some other com-bination of the three, merge those two alternatives to suit the situation.If your document contains nontrivial examples of program code, we rec-ommend releasing these examples in parallel under your choice of free soft-ware license, such as the GNU General Public License, to permit their usein free software.

30

