Mango.io

This is intended to serve as a design overview for thadd.io package. Understanding
the concepts described herein should provide one with enoughation to extend the
IO system, or leverage it in ways that might not seempletely obvious at first glance.

The basic premise behind this package is as follows:

* The central concept is that of a buffer. The buffets as a queue (line) where
items are removed from the front and new items arechtidihe back. Buffers are
modeled by mango.io.model.IBuffer, and a concrete impiaten is provided
via mango.io.Buffer.

» Buffers can be written to directly, but a Reader an@ater are typically used to
read & write formatted data. These readers & writees layund to a specific
buffer: often the same buffer. It's also perfectlgilimate to bind multiple writers
to the same buffer; they will all behave seriallyca® would expect. The same
applies to multiple readers on the same buffer. Reaaed writers support two
styles of 10: put/get, and the C++ iostream style <¢ am operators. All such
operations can be chained.

* Any class can be made compatible with the reader/writamdwork by
implementing the IReadable and/or IWritable interfad&sch of these specifies
just a single method.

» Buffers may also be tokenized. This is handy when odeading with text input,
and/or the content suits a more fluid format than tnggical readers support.
Tokens are mapped directly onto buffer content (slicetlallocated), so there is
only minor overhead in using them. Tokens can be read aiti¢rwby readers
and writers also, using a more relaxed set of rulestti@se applied to formatted
10.

» Buffers are sometimes memory-only, in which case tleneothing left to do
when a reader (or tokenizer) hits an end-of-buffer ¢amdi Other buffers are
themselves bound to a Conduit. When this is the caseader will eventually
cause the buffer to reload via its associated condwtzidtrs buffer content will
thus be lost. The same concept is applied to writetereby they flush the
content of a full buffer to a bound conduit before cannhg.

» Conduits provide virtualized access to external contant,represent things like
files or Internet connections. They are just a d#iferkind of stream. Conduits are
modeled by mango.io.model.IConduit, and implemented vise$akileConduit
and SocketConduit. Additional kinds of conduit are easganstruct: one either
subclasses mango.io.Conduit, or implements mango.io.rodeduit. A conduit

reads and writes from/to a buffer in big chunks (typyctie entire buffer). Note
that buffers happily handle cases where the outputotdmep up with the input.
In such cases, unconsumed data remains in the buffer (mowéd head) and
less is read from the producer to compensate for thelslon.

* Because all 10 is buffered, you may find that a ‘fluspetion is necessary at
times. For example, when writing to a random-acd#éssone would flush the
output buffer before moving the file-pointer to a difet location. You may have
this operation performed automatically by using a buffeivdgve (FlushBuffer)
or, leverage the CompositeWriter class instead. Ther l& the recommended
approach.

* Additional file-system support is provided through two clasdegeSystem
supports operations such as getting and setting the cudissdtory, and
FileProxy exposes facilities to manipulate both filed dimectories.

» Console 10 is implemented via Stdio, using FileCondod appropriate readers
and writers. Console IO can be redirected in thattosmal (shell) manner.

» The package is intended to be portable between linux and WiaB@rms.

Socket functionality is built upon the gracious provisioh socket.d, written by
Christopher Miller.

